Highlights from the 2021 State of the Market Report for the NYISO Markets: Energy & Ancillary Services Market Issues

Presented by:

Pallas LeeVanSchaick NYISO Market Monitoring Unit Potomac Economics

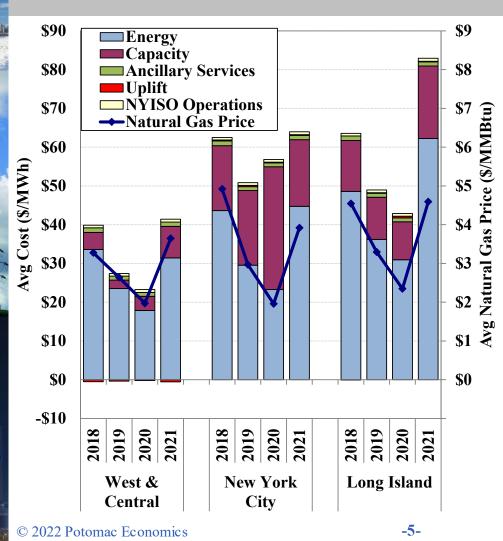
May 26, 2022

Introduction

- As the Market Monitoring Unit for NYISO, we produce an annual State of the Market (SOM) Report to:
 - ✓ Evaluate the performance if the markets;
 - ✓ Identify market flaws or market power concerns; and
 - \checkmark Recommend improvements in the market design.
- Given the breadth of the report, this presentation covers only highlights from our 2021 SOM Report related to energy and ancillary services markets, including:
 - ✓ A summary of E&AS market outcomes;
 - Recommended market enhancements for the:
 - Energy and ancillary services markets

Schedule

- The 2021 SOM is being presented at several meetings:
 ✓ May 24: MIWG/ICAPWG
 - Capacity Market & Policy focus 75 minutes
 - ✓ May 25: Market Committee
 - Overview one hour
 - ✓ May 26: MIWG/ICAPWG
 - Energy and Ancillary Services focus 75 minutes
 - \checkmark Additional slots can be scheduled if there is interest.

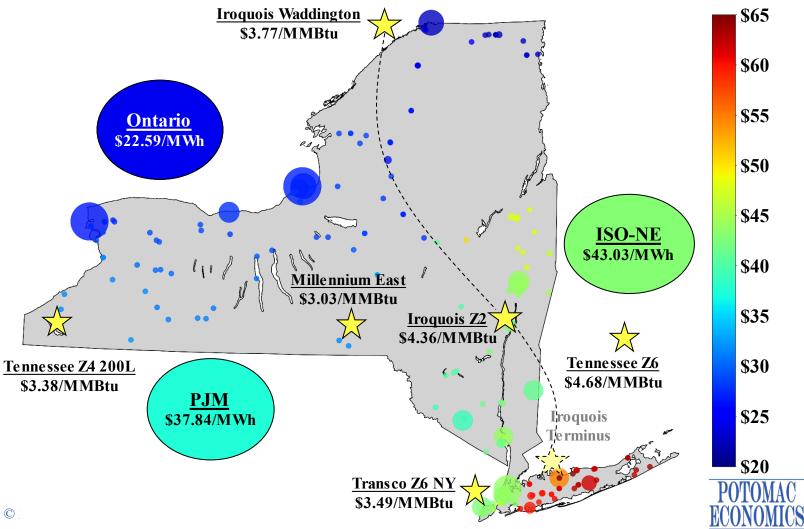


Market Outcomes

Section II.A

Market Outcomes: All In Price Trends

- Energy prices rose in 2021 because of:
 - ✓ Gas prices
 - ✓ IP nuke retirement
 - Planned and forced transmission outages
 - Return of normal demand after year affected by COVID
- Capacity prices in 2021 fell in NYC and rose in other areas



en l'ittittitititi

Section VI.A Appendix Section III.C

Market Outcomes: Congestion Patterns

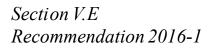
Recommended Market Enhancements

Section XI

Prioritizing Market Enhancements

- Unprecedented levels of policy-driven investment expected over the coming decade
- The NYISO should focus on enhancements that:
 - ✓ Guide renewable investment to where it is most deliverable
 - Provide incentives for investment in flexible resources that help with:
 - Integrating intermittent renewables, while
 - Maintaining reliability
 - ✓ Encourage retirement of inflexible existing generators
- Accomplishing this will require prudent improvements to better value energy and ancillary service providers.

Section III.B Recommendations 2015-16, 2017-1, 2016-1, 2017-2, 2019-1, 2020-2, and 2021-2


Investment Signals: Enhancing Incentives for Key Attributes

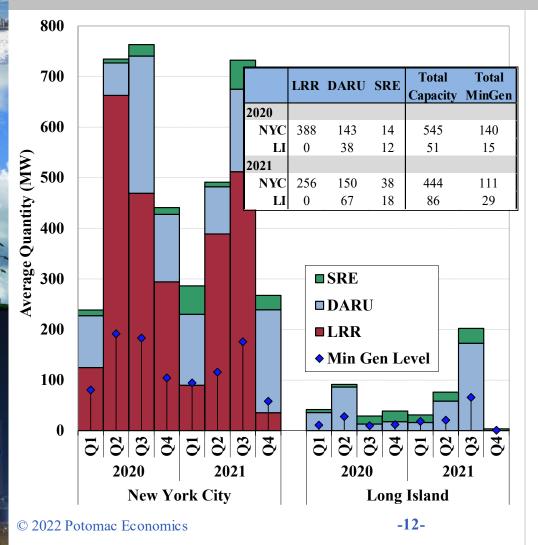
- Increasing E&AS net revenues for flexible units would:
 - ✓ Reduce the capacity revenues needed to maintain reliability
 - ✓ Encourage older inflexible units to retire
- NYISO is working on addressing two key recommendations:
 - ✓ 2015-16: Dynamic reserve requirements
 - ✓ 2017-1: NYC locational reserve requirements
- We also recommend enhancements to E&AS markets:
 - ✓ 2016-1: Compensate reserves that increase transfer capability
 - ✓ 2017-2: Reserve demand curve increases for statewide
 - ✓ 2019-1 & 2021-2: Full representation of Long Island reserves
 - ✓ 2020-2: Eliminate offline fast-start pricing
- Increased intermittent penetration will increase benefits.
 2022 Potomac Economics

Section XI.B Recommendations 2015-16

Energy Market Enhancements: Dynamic Reserve Requirements

- Dynamic reserves would facilitate improved modeling of:
 - Long Island allow larger amounts of LI reserves to support the requirements in broader regions
 - ✓ East NY and SENY allow holding reserves on the interfaces to more efficiently satisfy regional reserve requirements
 - ✓ HQ-NYCA imports would increase energy schedules significantly above the level currently allowed
 - ✓ NYCA allow higher reserve requirement to account for under-scheduling of energy not addressed by RECA but NYISO has proposed to incorporate this in the design
 - ✓ NYC Load Pockets allow holding some of local reserves on the interfaces into NYC and its load pockets
 - Operator Reserve Adjustments avoid OOM actions under temporary conditions – not addressed by RECA

Energy Market Enhancements: Reserves for NYC Congestion Management

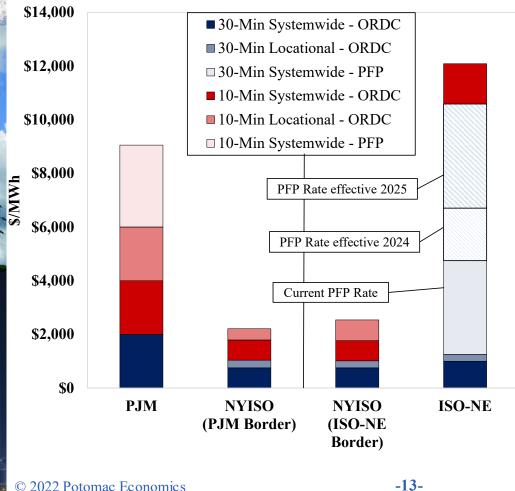

Transmission Facility		Average (Constraint Li	Aditional Reserves		
		N-1 Limit	Seasonal	Seasonal	Above	Percent
		Used	LTE	STE	LTE	Increase
345 kV	Dunwodie-Motthavn	986	833	1298	153	18%
	Farragut-E13th ST	1127	935	1345	192	21%
	W49th ST-E13th ST	1210	986	1566	224	23%
	Goethals-Gowanus	951	748	1241	203	27%
	Sprnbrk-W49th ST	1236	944	1529	292	31%
138 kV	Gowanus-Greenwd	316	291	341	25	9%
	Vernon-Greenwd	238	226	248	11	5%
	Foxhills-Greenwd	304	239	371	66	28%

• 66 percent (or \$28 million) of real-time congestion during 2021 occurred on constraints that would have been loaded above LTE after a single contingency.

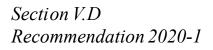
Section V.G Recommendation 2017-1, 2021-2

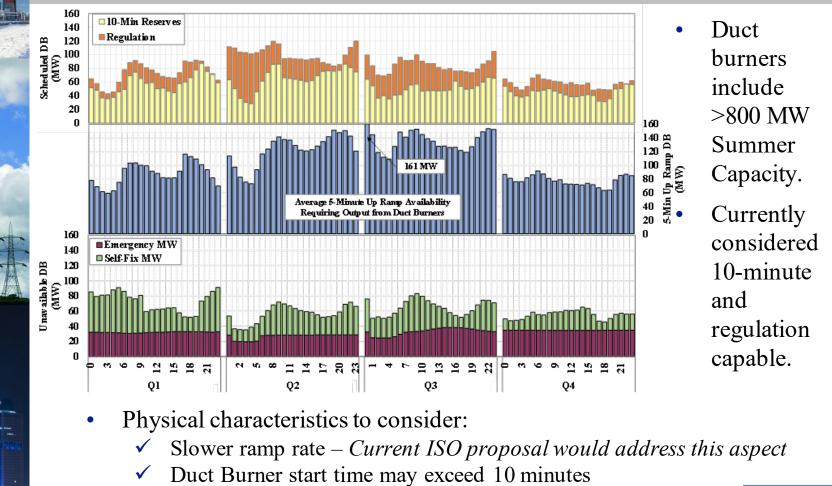
Energy Market Enhancements: Supplemental Commitments for Reserves

- Frequent ST DARU/LRR for NYC reserves, accounting for:
 - ✓ 41 percent of NYC ST run hours
 - ✓ 40 percent of NYC ST energy
- High ST DARU in 2021 Q3 for LI reserves during Y49/Y50 outages
- Local energy and reserve prices are understated because they do not reflect these costs
- Model reserve constraints that drive these _____


commitments

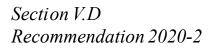
Section V.A Recommendation 2017-2

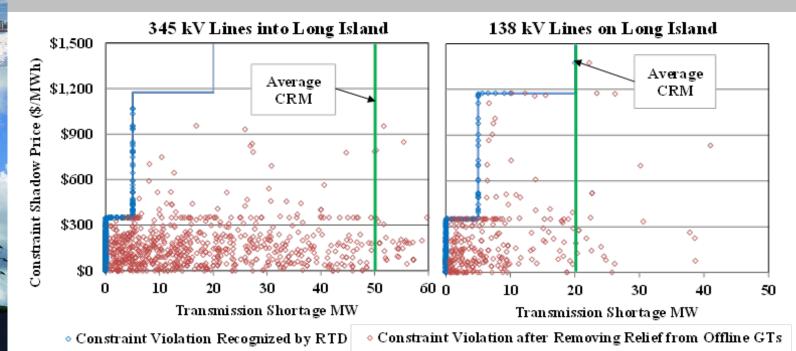

Energy Market Enhancements: Shortage Pricing Disparities and Associated Risks


- Different regional 30min shortage adders:
 - ✓ NYISO: ~\$1,000
 - ✓ PJM: ~\$2,000
 - ✓ ISO-NE: ~\$10,500
- 10-min shortage adders:
 - ✓ NYISO: ~\$2,450
 - ✓ PJM: ~\$9,000
 - ✓ ISO-NE: ~\$12,000
- Recommend levels that would stop OOM actions to maintain reliability and reflect reliability value.POTOMAC

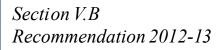
Energy Market Enhancements: Considerations for Fixed-Block Output

- A few of our recommendations address complications that arise due to fixed-block generation such as peaking units and duct-firing ranges of combined cycle units.
 - ✓ 2020-1: Consider enhanced scheduling in real-time of duct-firing capacity.
 - ✓ 2020-2: Eliminate offline fast-start pricing from RTD
 - ✓ 2012-13: Adjust RTD and RTC look ahead evaluations to be more consistent with gas turbine commitment and ramp requirements.
- The following three charts illustrate issues that relate to these recommendations:
 - ✓ Issues with modeling duct burners as "incremental energy step" in the combined cycle output range.
 - ✓ Efficiency of offline GT fast-start pricing performance.
 - ✓ GT commitment efficiency and performance.


Energy Market Enhancements: Consider Duct Burner Modeling Enhancements


Limited flexibility prevents use for AGC

© 2022 Potomac Economics



Energy Market Enhancements: Offline GT Price-Setting Elimination

- Offline GT pricing treats offline GTs as able to respond to dispatch instructions when they cannot actually do so.
- Use of offline GT pricing leads to: (a) artificially low transmission limits and flows in areas more reliant on GTs and (b) inefficient dispatch and incentives for battery storage.
 © 2022 Potomac Economics

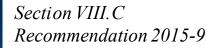
Energy Market Enhancements: GT Commitment Efficiency

Startup	Cost not Covered by LBMP Revenues					
Performance	2019	2020	2021			
< 80%	19.2%	19.9%	13.5%			
>= 80%	15.6%	16.0%	10.6%			
Total	15.9%	16.4%	11.0%			

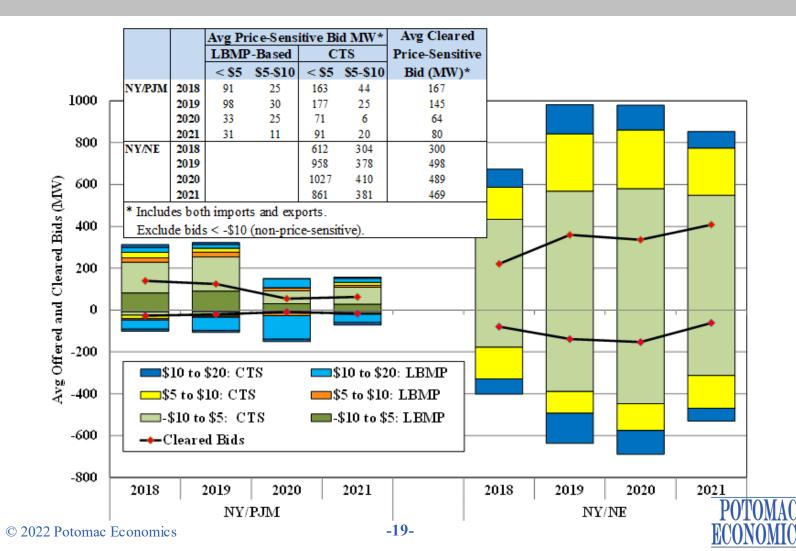
- GT commitment efficiency (relative to RT prices) improved because of quick-start pricing rule enhancements in December 2020
 - RT prices better reflect the commitment costs of quick-start units when they are the marginal resource
- Two reasons for inefficient GT commitments:
 - ✓ RTC/RTD divergence
 - ✓ Current offline fast-start price setting rules
- Poor RTC/RTD divergence also leads to inefficient decommitment of peaking units and associated price spikes

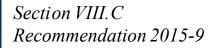
© 2022 Potomac Economics

-17-

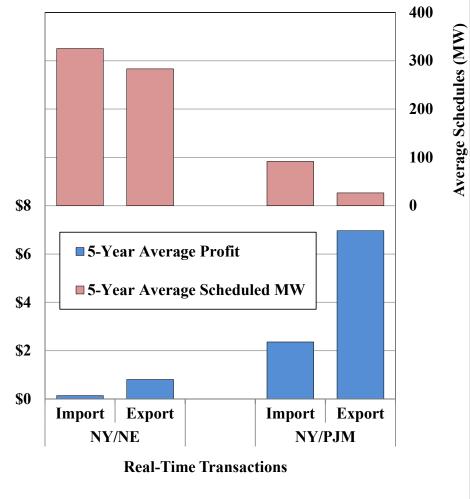


Section VI.B and Appendix III.E Recommendation 2021-3


Energy Market Enhancements: Modeling Constraints on Long Island


Year	Long Island Load Pockets	# OOM Days		# Congested Days		Avg. LBMP	Est. LBMP w/ Modeling Local
		69 kV	TVR	69 kV	138 kV		Constraints
2020	Valley Stream	79			284	\$29.15	\$33.70
	Brentwood	54			0	\$27.97	\$28.54
	East of Northport	52			124	\$30.68	\$35.62
	East End	13	95		1	\$31.45	\$48.13
2021	Valley Stream	70			161	\$53.78	\$55.10
	Brentwood	2		129	0	\$55.45	\$55.46
	East of Northport	28		95	101	\$55.79	\$57.43
	East End	18	65		0	\$56.97	\$69.12

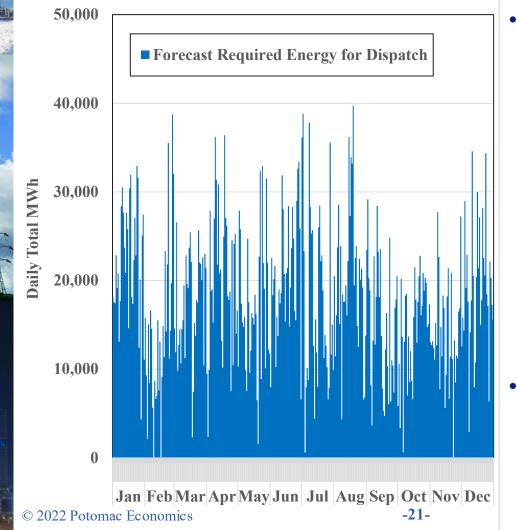
- Brentwood & East of Northport 69-kV circuits secured in DAM & RT beginning in April 2021.
- TVR OOM on the East End still frequent and not addressed.
 ✓ 2021-3: Model TVR needs using surrogate constraints POTON



Energy Market Enhancements: Assessment of CTS Transaction Bids and Offers

Energy Market Enhancements: CTS Transactions Profitability

- #2015-9 would eliminate fees for CTS transactions at NY-PJM border.
- Elimination of fees would improve use of NY-NE interface.
- CTS transactions do not drive transmission investment costs
- Lower fees would:
 - Encourage pricesensitive scheduling
 - Potentially increase revenue collection
 - Help integrate renewables



© 2022 Potomac Economics

Profitability (\$/MWh)

Energy Market Enhancements: Longer Lead Time Reserves

- Growing set of situations in need of more cost-effective longer lead time reserves:
 - ✓ 60-minute reserves for NYC N-1-1-0 requirement
 - Up to 4-hour reserves for load forecast errors, intermittent renewable variations, and underscheduling of physical energy
- Avoid OOM and provide better incentives for flexibility
 - Help integrate renewables

